

US009638514B2

(12) United States Patent Huber

(10) Patent No.: US 9,638,514 B2

(45) **Date of Patent:** May 2, 2017

(54) OPTICAL POSITION-MEASURING DEVICE

(71) Applicant: **DR. JOHANNES HEIDENHAIN**

GmbH, Traunreut (DE)

(72) Inventor: Walter Huber, Traunstein (DE)

(73) Assignee: DR. JOHANNES HEIDENHAIN

GMBH, Traunreut (DE)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/975,880

(22) Filed: Dec. 21, 2015

(65) Prior Publication Data

US 2016/0202041 A1 Jul. 14, 2016

(30) Foreign Application Priority Data

Jan. 13, 2015 (DE) 10 2015 200 293

(51) Int. Cl.

G01D 5/347 (2006.01) G01B 11/14 (2006.01) G01D 5/26 (2006.01) G01B 11/00 (2006.01)

(52) U.S. Cl.

CPC *G01B 11/14* (2013.01); *G01B 11/002* (2013.01); *G01D 5/266* (2013.01)

(58) Field of Classification Search

CPC .. G01D 5/347; G01D 5/3473; G01D 5/34746; G01D 5/266; G01B 11/14

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,666,196	A *	9/1997	Ishii G01D 5/38
			250/237 G
8,472,029	B2	6/2013	Bridges et al.
2011/0235051	A1*	9/2011	Huber G01B 11/14
			356/499
2012/0242994	A1	9/2012	Huber et al.
2013/0114062	A1	5/2013	Liesener
2014/0374579	A1	12/2014	Goodwin et al.
2015/0070711	A1*	3/2015	Holzapfel G01D 5/38
			356/614

FOREIGN PATENT DOCUMENTS

DE	102011005937	A1	9/2012
JP	2005326231	Α	11/2005

* cited by examiner

Primary Examiner — Jonathan Hansen (74) Attorney, Agent, or Firm — Leydig, Voit & Mayer,

(57) ABSTRACT

An optical position-measuring device senses a relative position of two objects. A reflection material measure is connected to one object and a scanning unit is connected to the other object. A beam is split into three sub-beams in a first splitting plane by a first splitting element. The first and third sub-beams are deflected toward the reflection material measure by the deflecting elements, while the second sub-beam is split into fourth and fifth sub-beams by a second splitting element. The first and fourth sub-beams propagate as a first pair of superimposed sub-beams and the third and fifth sub-beams propagate as a second pair of superimposed sub-beams. The first and second pairs of superimposed sub-beams, after being reflected by the reflection material measure, propagate respectively toward detectors, where the sub-beams in each pair are brought into interfering superposition, so that the detectors detect displacement-dependent scanning signals.

16 Claims, 5 Drawing Sheets

